singular value inequalities for positive semidefinite matrices
نویسندگان
چکیده
in this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. our results are similar to some inequalities shown by bhatia and kittaneh in [linear algebra appl. 308 (2000) 203-211] and [linear algebra appl. 428 (2008) 2177-2191].
منابع مشابه
Singular value inequalities for positive semidefinite matrices
In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].
متن کاملSingular Value Inequalities for Positive Semidefinite Matrices
In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].
متن کاملInequalities for Singular Values of Positive Semidefinite Block Matrices
In this paper, we first give a lower and upper bounds for singular values of a 2×2 positive semidefinite block matrices. Then, we give some weakly majorization inequalities of singular values positive semidefinite block matrices. Also, we present inequalities involving the direct sum and sum of positive semidefinite matrices.
متن کاملInequalities Involving Khatri-rao Products of Positive Semidefinite Hermitian Matrices
In this paper, we obtain some matrix inequalities in Löwner partial ordering for Khatri-Rao products of positive semidefinite Hermitian matrices. Furthermore, we generalize the Oppenheim’s inequality, with which we will improve some recent results.
متن کاملA determinantal inequality for positive semidefinite matrices
Let A,B,C be n× n positive semidefinite matrices. It is known that det(A+ B + C) + detC ≥ det(A+ C) + det(B + C), which includes det(A+B) ≥ detA+ detB as a special case. In this article, a relation between these two inequalities is proved, namely, det(A+ B + C) + detC − (det(A+ C) + det(B + C)) ≥ det(A+ B)− (detA+ detB).
متن کاملTrace and Eigenvalue Inequalities for Ordinary and Hadamard Products of Positive Semidefinite Hermitian Matrices
Let A and B be n n positive semidefinite Hermitian matrices, let c and/ be real numbers, let o denote the Hadamard product of matrices, and let Ak denote any k )< k principal submatrix of A. The following trace and eigenvalue inequalities are shown: tr(AoB) <_tr(AoBa), c_<0or_> 1, tr(AoB)a_>tr(AaoBa), 0_a_ 1, A1/a(A o Ba) <_ Al/(Az o B), a <_ /,a O, Al/a[(Aa)k] <_ A1/[(A)k], a <_/,a/ 0. The equ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
bulletin of the iranian mathematical societyناشر: iranian mathematical society (ims)
ISSN 1017-060X
دوره 40
شماره 3 2014
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023